p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.48D4, C22.3Q16, C2.D8⋊8C2, (C2×C4).40D4, C2.8(C2×Q16), Q8⋊C4⋊7C2, C22⋊C8.4C2, (C2×C8).8C22, C22⋊Q8.6C2, C4.33(C4○D4), C4⋊C4.67C22, C2.19(C8⋊C22), (C2×C4).109C23, C22.105(C2×D4), (C2×Q8).18C22, (C22×C4).55C22, C2.15(C22.D4), (C2×C4⋊C4).17C2, SmallGroup(64,165)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C2×C4⋊C4 — C23.48D4 |
Generators and relations for C23.48D4
G = < a,b,c,d,e | a2=b2=c2=1, d4=e2=c, dad-1=eae-1=ab=ba, ac=ca, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bcd3 >
Character table of C23.48D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | -2i | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 2i | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(2 31)(4 25)(6 27)(8 29)(10 20)(12 22)(14 24)(16 18)
(1 30)(2 31)(3 32)(4 25)(5 26)(6 27)(7 28)(8 29)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 18 5 22)(2 15 6 11)(3 24 7 20)(4 13 8 9)(10 32 14 28)(12 30 16 26)(17 27 21 31)(19 25 23 29)
G:=sub<Sym(32)| (2,31)(4,25)(6,27)(8,29)(10,20)(12,22)(14,24)(16,18), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18,5,22)(2,15,6,11)(3,24,7,20)(4,13,8,9)(10,32,14,28)(12,30,16,26)(17,27,21,31)(19,25,23,29)>;
G:=Group( (2,31)(4,25)(6,27)(8,29)(10,20)(12,22)(14,24)(16,18), (1,30)(2,31)(3,32)(4,25)(5,26)(6,27)(7,28)(8,29)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18,5,22)(2,15,6,11)(3,24,7,20)(4,13,8,9)(10,32,14,28)(12,30,16,26)(17,27,21,31)(19,25,23,29) );
G=PermutationGroup([[(2,31),(4,25),(6,27),(8,29),(10,20),(12,22),(14,24),(16,18)], [(1,30),(2,31),(3,32),(4,25),(5,26),(6,27),(7,28),(8,29),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,18,5,22),(2,15,6,11),(3,24,7,20),(4,13,8,9),(10,32,14,28),(12,30,16,26),(17,27,21,31),(19,25,23,29)]])
C23.48D4 is a maximal subgroup of
C24.115D4 C24.183D4 C24.118D4 (C2×D4).302D4 (C2×D4).303D4 C42.224D4 C42.225D4 C42.228D4 C42.235D4 C24.121D4 C23⋊3Q16 C24.126D4 C24.129D4 C4.162+ 1+4 C4.182+ 1+4 C42.284D4 C42.288D4 C42.291D4
C4⋊C4.D2p: C24.17D4 C4⋊C4.18D4 C4⋊C4.20D4 C24.18D4 C42.354C23 C42.358C23 C42.424C23 C42.425C23 ...
(C2×C2p).Q16: C42.282D4 C23.40D12 C23.35D20 C23.35D28 ...
C23.48D4 is a maximal quotient of
C24.157D4 C24.88D4
(C2×C2p).Q16: C2.D8⋊5C4 C2.(C4×Q16) (C2×C4).19Q16 (C2×C8).1Q8 (C2×C8).60D4 (C2×C4).23Q16 C23.40D12 C4⋊C4.230D6 ...
C4⋊C4.D2p: C23.37D8 C24.160D4 C24.86D4 D6.Q16 D6.2Q16 D10.7Q16 D10.8Q16 D14.Q16 ...
Matrix representation of C23.48D4 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
0 | 4 | 0 | 0 |
13 | 0 | 0 | 0 |
0 | 0 | 11 | 11 |
0 | 0 | 3 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 10 | 10 |
0 | 0 | 12 | 7 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[0,13,0,0,4,0,0,0,0,0,11,3,0,0,11,0],[0,1,0,0,1,0,0,0,0,0,10,12,0,0,10,7] >;
C23.48D4 in GAP, Magma, Sage, TeX
C_2^3._{48}D_4
% in TeX
G:=Group("C2^3.48D4");
// GroupNames label
G:=SmallGroup(64,165);
// by ID
G=gap.SmallGroup(64,165);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,192,121,362,194,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^4=e^2=c,d*a*d^-1=e*a*e^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c*d^3>;
// generators/relations
Export
Subgroup lattice of C23.48D4 in TeX
Character table of C23.48D4 in TeX